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3-D Audio Versus Head Down TCAS Displays

Durand R. Begault and Marc T. Pittman

SUMMARY

The advantage of a head up auditory display was evaluated in an experiment designed to measure

and compare the acquisition time for capturing visual targets under two conditions: Standard head down

Traffic Alert and Collision Avoidance System (TCAS) display, and three-dimensional (3-D) audio

TCAS presentation. Ten commercial airline crews were tested under full mission simulation conditions

at the NASA Ames Crew-Vehicle Systems Research Facility (CVSRF) Advanced Concepts Flight
Simulator. Scenario software generated targets corresponding to aircraft which activated a 3-D aural

advisory or a TCAS advisory. Results showed a significant difference in target acquisition time between

the two conditions, favoring the 3-D audio TCAS condition by 500 ms.

INTRODUCTION

The current implementation of the Traffic Alert and Collision Avoidance System (TCAS II) uses

both auditory and visual displays of information to supply flight crews with real-time information about

proximate aircraft. However, the visual display is the only component delegated to convey spatial

information about surrounding aircraft, while the auditory component is used as a redundant warning

or, in the most critical scenarios, for issuing instructions for evasive action.

Within its standard implementation, three categories of visual-aural alerts are activated by TCAS,

contingent on an intruding aircraft's distance. The first category, an informational visual display,

presents proximate traffic. In this case, TCAS functions more as a situational awareness system than as

a warning system. The second category, a visual-aural cautionary alert, is a traffic advisory. The

threshold for activating a traffic advisory is a potential conflict within 40 s; an amber filled circle is

generated on a visual map display, and an auditory warning consisting of a single cycle of the spoken

words TRAFFIC-IRAbTIC is given. The third category, a visual-aural warning alert, is a resolution

advisory. The threshold for activating a resolution advisory is a potential conflict within 20-25 s; a red

filled square is generated on a visual map display, and an auditory warning enunciating the necessary

appropriate evasive action (e.g., CLIMB-CLIMB-CLIMB) is given.

Chappell, et al. (ref. 1) evaluated the effectiveness of TCAS during a full-mission simulation

experiment. Three TCAS conditions were evaluated, each involving a different level of visual-aural

information about the location of conflicting aircraft. In addition, a non-TCAS condition was

evaluated where only spoken waffle advisories from air traffic controllers (ATC) were used. Their

measure of performance focused on the time to make an evasive maneuver in response to a TCAS

resolution advisory. The findings suggest that, although the TCAS displays are superior to ATC radio

communication, no significant benefit is gained in increasing the complexity of the TCAS display

itself. Specifically, no advantage was found in providing pilots with a head down planform display of
traffic information.



Perrott, et al. (ref. 2) found that spatial auditory information can significantly reduce the acquisition

time necessary to locate and identify a visual target. They used a 10 Hz click train from a speaker that was

either spatially correlated or uncorrelated to a target light. The results showed that spatially correlated

information from an auditory source substantially reduced visual search time (between 175-1200 ms). In

an experiment by Sorkin, et al. (ref. 3), localization accuracy rather than target acquisition time was

studied in a simulated cockpit environment. A magnetic head tracker was either correlated or uncorrelated

with a 3-D audio display that corresponded to the locations of visual targets. Results of the study found

that accuracy of azimuthal localization was improved when head movement was correlated with the 3-D

audio display, but that elevation localization was no better than chance.

Begault (ref. 4) evaluated the effectiveness of a 3-D head up auditory TCAS display during a full-

mission simulation by measuring target acquisition time. All crews used visual out-the-window search

in response to a TCAS advisory, since no planform display was used. Half the crews heard the

standard loudspeaker audio alert, and half heard an alert that was spatialized over headphones using 3-D

sound techniques. The direction of the spatialization was linked to the target location's azimuth, but not

its elevation. In addition, the spatialized audio stimuli were exaggerated by a factor of three in

relationship to the visual angle to facilitate head movement in the aurally guided visual search (e.g.,

visual targets at 10° azimuth would correspond to spatialized stimuli at 30 ° azimuth). Results of the

study found a significant reduction in acquisition time when using spatialized sound (4.7 vs. 2.5 s).

The current study evaluated the feasibility of using either a head down visual display (standard

TCAS), or a head up audio display (3-D TCAS). 3-D sound was used for aurally guided visual search

as in the study by Begault (ref. 4), but without inclusion of the exaggeration factor mentioned above. In

addition, the 3-D audio display in the current experiment included three categories of elevation cues.

Two groups consisting of 5 crews were evaluated during a full-mission simulation. It was hypothesized

that a significant difference in both acquisition time and the number of targets acquired might occur

between the two conditions.

EXPERIMENT METHOD

Subjects

Ten two-person flight crews served as subjects for this study. Crews were composed of airplane

pilots employed by a major U.S. air carrier and were rated in a glass cockpit aircraft (e.g., Boeing 757,

767,737-300/400 or 747-400). Each crew member was paid a nominal amount for participating. Since

all crew members had current medical certificates, they had been previously evaluated for normal hearing

within the last year (First Officers) or six months (Captains) by company and FAA medical examiners.



Experimental Design

Two groups, each comprised of five two-person crews, were evaluated in a between-subjects

design. The standard TCAS group used a audio-visual system approximating the TCAS system

currently implemented in U.S. commercial air carders. This consisted of an audio traffic advisory

presented via an overhead speaker and a standard TCAS head down map display.

The 3-D TCAS group wore stereo headsets and were presented a binaurally-processed version of the

audio portion of the traffic advisory, but were not supplied with any visual system information. The

perceived direction of the 3-D auditory advisory was adjusted to correspond to the azimuth of the target

out-the-window.

The 10 crews were assigned randomly to either the standard TCAS or the 3-D TCAS group. The

dependent variables were: (1) the time interval between the appearance of a visual target in conjunction

with an aural advisory and the verbal response from a crew member indicating acquisition of the target;

and (2) the number of targets acquired.

The crew members were instructed to call out verbally when they had visually acquired the aircraft

outside the window (a consistent utterance, such as "got it!"). Acquisition time (the difference between

the time the visual target was generated and the beginning of the verbal utterance) was observed on

video tapes by an unbiased researcher. Each verbal acquisition increased the count for the number of

targets acquired. The acquisition time was determined by the time code generated on the video tapes.

The accuracy of determining the beginning of the verbal utterance was within 2 video frames (0.066 s).

Target acquisition times and the number of targets acquired were also categorized according to whether

the target was visible to both or to only one crew member.

Stimuli

A total of 24 targets were presented to the crews for evaluation during the cruise phase of the flight.

Six additional targets were included as "dummy" targets to provide a realistic context for the TCAS

system in the vicinity of the airports (3 during takeoff and 3 during landing phases of flight) and were

not included as part of the experiment's data set. This was because of the relatively high amount of

variability which can occur between crews during takeoff and landing phases of flight (e.g., workload,

ATC communications). Also, in the vicinity of the airports (but not during the cruise phase of flight),

simulated city lights are visible, making the out-the-window scene difficult to control across crews. The

relative luminosity and contrast ratios between modeled airport data and the targets would otherwise be

an uncontrolled variable in acquisition time, since crews approach airports in a slightly different manner

and time.

In order to maintain a consistent visual image size, all targets were fixed at a 3 mi. distance from the

aircraft. This made the target appear as a flashing dot of light similar to that seen out the cockpit

window of a real aircraft. However, the target did not change size from the perspective of the subjects

since its position was always linked to the position of the simulator aircraft; in other words, it visually

appeared to remain at a fixed distance and identical speed to the simulator. This was done to eliminate
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movementof thetargetasavariable,andto eliminatedifferencesbetweencrewsasafunctionof

movement of the aircraft.

The out-the-window positions of the targets patterned a 3x8 matrix (see Figure 1). The positions of

the targets were randomly assigned to 1 of 8 azimuths (-50 °, -37 °, -22 °, -10 °, 10 °, 22 °, 37 °, and 50 °)

within 3 elevations. Five targets were assigned to azimuths 3,000 feet above own ship; 14 targets at

azimuths at the same elevation as own ship; and 5 targets at azimuths 3,000 feet below own ship.

For the Standard TCAS condition, a computer generated four to six moving symbols depicting

aircraft. The symbols appeared at pseudo-random positions, and were presented on the TCAS map

display. One of the symbols would be elevated to advisory status for target acquisition evaluation,

while the remaining symbols would eventually vector off the display.

-50 -37 -22 -10 10 22 37 50

AZIMUTH (degrees)

Figure 1. The relative elevations and azimuths of the 24 targets used in the experiment. The number
indicates the frequency of occurrence; the squares indicate targets visible to both crew members.

Available Field.of.View

A substantial limitation inherent in all flight simulators is the available out-the-window field-of-

view for each pilot. The simulator used in this experiment was a modified Lockheed-Georgia

cockpit equipped with a Singer-Link Advanced Simulator Technology visual system. This system

had a 3-channel, 4-screen display. Each channel contained a discrete display of visual information

relevant to the scenario; the 2 center screens in the simulator displayed an identical visual scene from

1 channel, with 1 screen visible by each pilot. The center channel screen enables each pilot a field-

of-view extending to approximately :f.25 ° azimuth. In addition, 2 side screens fed by the other 2

channels gave each pilot a unique side field-of-view that extended the total field-of-view to

approximately :f.52 ° azimuth.

Figure 2 shows the available field-of-view for the Captain; the First Officer's view would be the

mirror image of this figure. Note that the field-of-view from 25 ° to 52 ° is available only to 1 crew

member while the area between +9.5 ° is available to both crew members.

4



I
|

6O

Audio

50 I 37 I 22 I0 I I01 22 I 37 150

I I I I I I

' 'I I , _--_--_

' 'I ' ' F,\\\\_
, ', l'J ' ', k"_\\\\\"i

''' ;1'_4.,oI'o '_,z 'o

: _ ImL_F- I

|

60

Figure 2. The horizontal field-of-view in the simulator, from the perspective of the left seat (Captain's
position). The numbers within the dashed lines show the mapping between visual azimuths and the
specific azimuth position of the 3-D sound cue that was used for the alert.

Figure 3 shows the vertical field-of-view. The immediate range is from approximately -13 ° to +16 °,

but can extend from -18 ° to +20 ° with head and body adjustments. For reference, the visible range of a

target at 3 miles is shown in terms of relative elevation (in feet) above and below the simulator.

to++°+l
Figure 3. The vertical field-of-view in the simulator, based on the relative altitude of an aircraft at 3
miles distance.
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Audio Environment and 3-D Sound Processing

A special TCAS advisory sound was formed for this experiment. Specifically, in addition to the

usual _F_IC-TRAFFIC enunciation, a pre-advisory tone was used. The pre-advisory consisted of

two brief (66 ms) complex tones (labeled BIP) separated by 39 ms of silence. These were synthesized

by adding multiple square waves with different fundamental frequencies, and then giving the overall

composite a rapid amplitude envelope rise time to favor the conveyance of spatial information. Because

of the rich harmonic structure, it could be played at a level approximately 10 dB below the speech alert

and still be noticeable. The TCAS speech alert TRAFFIC-TRAFFIC was digitally recorded by a male

speaker in a soundproof booth using an electrostatic microphone, preamplifier, and a digital audio tape

(DAT) recorder.

The total duration of the alert was 1.36 s: 171 ms for the pre-advisory; a 85 ms silent interval; 462

ms for the word TRAFFIC; a 180 ms silent interval; and another 462 ms TRAFFIC (see Figure 4).

This recording was transferred to a desktop computer using audio recording software and hardware at a

sampling rate of 50 kHz. Next, the aural alert was convolved with HRTF measurements at five spatial

auditory positions: Left 10 °, 22 °, 37 °, and 50 ° azimuth. Positions for right 10% 22 °, 37 °, and 50 °

azimuth were obtained by reversing the output channels at playback, resulting in a total of eight available

spatialized positions.

The convolution was performed in non-real time on the desktop computer by supplying formatted

versions of the measurements to a standard signal processing package. The resulting signals were then

converted to a 33.3 kHz sample rate in 12-bit signed integer form and subsequently stored in a stereo

audio sampler. The stimuli were played back in coordination with the scenario software via note on�off

commands inherent to the Musical Instrument Digital Interface (MIDI) specification.

Each pilot wore a stereo headset (a modified Sennheiser HME 1410-KA) that was selected for

comfort and fidelity. The headphone frequency response ranged between 20 Hz-18 kHz and weighed

250 g. The headset had a supra-aural design (the drivers rested on the outside of the ears), allowing

outside conversation to be monitored more easily than with a circumaural design. Playback of the

speech portion of the alert was at approximately 74 dB SPL at the transducer;, the simulator's ambient

background noise was approximately 70 dB (C weighting) measured in the center of the cockpit with an

omnidirectional microphone during the cruise phase of flight. The spectrum of the ambient sound was

approximately that of white noise (for wind simulation) combined with engine sound simulations.
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Figure4. Arrangement of the pre-alert and traffic enunciation used for TCAS advisories in
the experiment.

PROCEDURE

Training

Each crew spent 2 days at the simulator, with the first day-and-a-half devoted to familiarization and

training. The training period focused on the particular handling capabilities of the aircraft, the touch

screen displays, controls, electronic checklist, and procedures to be used. It also included a brief

demonstration of the 3-D audio system for the 5 crews using that system. This consisted of a 2 minute

demonstration of several targets accompanied by the 3-D audio traffic alert. No other information was

given to the pilots about the nature of the experiment.

Scenario

The crews flew the experimental flights on the afternoon of the second day. The experiment was

conducted during the cruise phase of the fourth and final leg (SFO- LAX) flown. The first three legs

of the scenario were considered practice and therefore were excluded from the analysis. The 24 targets

were designed to occur at an approximate rate of 1 every 3 minutes during the cruise phase of flight

(more than 15 miles from departure or destination). Each individual target was activated according to

the distance in miles from the destination. During the experiment, all normal operations were

realistically simulated, including conventional VOR navigation and communications with ATC (ground,

tower, approach, departure, and center). Complete darkness was simulated with approximately 50 mi.

visibility throughout the flights. Crews were instructed to follow their normal company standard

operating procedures as closely as possible.
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RESULTS

A target was considered to have been "acquired" if the crew obtained it within a 10 s time window,

which is the limit before the traffic could potentially be elevated to traffic resolution status in a real

situation. Only 2 targets were acquired outside this time window and were treated as outliers.

Based on the examination of acquisition time, a total of 20 outliers (acquisition times > 3 SD) were

found. The standard TCAS group had 7 outliers, 2 being extreme outliers (_+_5SD), while the 3-D

TCAS group had 13 outliers, 1 extreme. All outliers greater than 3 SD were excluded from the

analysis. These outliers appeared in a random manner among crews and condition, and did not correlate

to specific targets.

A 2-way analysis of variance (ANOVA) with acquisition time as the dependent variable was

conducted. This analysis (Condition x View) was conducted to determine if significant differences

existed between targets in the field-of-view available to both crew members versus individual field-of-

view. The mean acquisition time for the standard TCAS group was 2.63 (SD, 1.19), while the mean

for the 3-D TCAS group was 2.13 (SD, 0.78). The ANOVA revealed a significant main effect for

condition, F (1,187) -- 15.09,p < 0.0001, as well as a significant main effect for view, F (1,187) =

50.37, p < 0.0001, although there was no interaction present F (1,187) -- 1.76, p > 0.05.

An additional ANOVA (Condition x Elevation) was conducted to determine if there were

significant differences in target acquisition time for targets at the aircraft's elevation versus targets

from above and below (i.e., those that fell into the upper or lower horizontal sections of the grid).

This analysis also shOWed a significant main effect for condition, F (1,187) = 11.19, p < 0.001,

but no significant main effect for elevation, F (1,187) -- 1.01, p > 0.05, or interaction present, F (1,

187) = 0.11, p > 0.05. Figure 5 displays the mean target acquisition time and standard deviations

for the 24 targets.

An additional set of analyses were conducted using the number of targets acquired as the dependent

variable. The mean number of targets acquired for the standard TCAS group was 19.4 (SD, 1.95),

while the mean for the 3-D TCAS group was 18.2 (SD, 2.95). There were no significant main effects

or interactions for these analyses, although there was approaching significance for the number of targets

acquired at a particular elevation, F (1,219) = 3.65, p < 0.06.



TCA$ 3-D

GROUP

Figure 5. Mean target acquisition times (2.63 vs. 2.13) and standard deviations for the 24 targets
used in the experiment.

CONCLUSIONS

The results of this experiment imply that the presence of a spatial auditory cue can significantly

reduce the time necessary for visual search in an aeronautical safety environment. This result is in line

with the studies of Perrott, et al. (ref. 5) and Perrott, et al. (ref. 2) that found advantages for aurally

guided visual search using analogous conditions in the laboratory. Although 500 ms may seem to be a

modest improvement, it does suggest that, in an operational setting, an aural 3-D TCAS display may

be desirable in addition to a standard TCAS display. This is because pilots can keep their head "out

the window" looking for traffic without needing to move the head downwards to the planform map

display and then back up. In other words, by accessing an alternative perceptual modality--sound--

the visual perceptual modality is freed to concentrate on other tasks, if necessary. In an actual cockpit

with 3-D sound added to the current TCAS system, the pilot flying could use the auditory information

for immediate head up search while the pilot not flying could gain numerical altitude information and

verify the direction for the other pilot. Future experiments will focus on evaluating the combination of

the two systems.

Begault (ref. 4) evaluated 3-D and monaural traffic alerts in a similar experiment, but without use of a

head down map display. In that experiment, the spatialized positions were "exaggerated" in relation to the

visual display by a factor of three. Spatialization of the aural alert resulted in a decrease in the mean target

acquisition time from 4.7 s to 2.5 s. This result, along with the current data, suggests that spatial

processing of an auditory alert is useful for guided visual search; in other words, aural alerts have greater

potential in human-machine interfaces than to function merely as "attention getting" mechanisms. Begault

(ref. 4) suggested the use of the exaggerated auditory azimuths may have contributed to the faster

acquisition times for the 3-D display. The mean target acquisition time of 2.5 s (SD, 0.8) in that study
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wasgreaterthanthatfoundin thepresentexperiment(M, 2.13s; SD, 0.78), suggesting that exaggerated

auditory stimuli are not necessary for effective aurally guided visual search.

Overall, the results presented here must be evaluated provisionally, particularly for the reason that a

simulator's field-of-view is not at all equivalent to that in an actual aircraft, in spite of the substantial

efforts to insure realism. Unlike actual cockpits, the field-of-view in the simulator is such that the

person sitting on the left side cannot see beyond 25 ° to the right, and the person on the right side cannot

see beyond 25 ° to the left. So it may have been that the spatial auditory cues were used for crude

estimates of visual target positions, in order to transcend the limitations of the simulator environment

(i.e., if it sounds to the right, the First Officer searches, and if it sounds to the left, the Captain

searches). This is indicative of a task delegation procedure. However, in an actual operations context,

visual search is usually conducted most actively by the pilot not flying, depending on the context of the

phase of flight and the relative urgency of the TCAS alert. Even if this trade-off feature were not an

element, the spatial auditory cue could still have been utilized as a crude way for determining where to

begin visual search. If it is true that the spatial sound cue provides a general direction for search that is

subsequently refined by visual search, then the additional azimuthal accuracy provided by a head-

coupled 3-D auditory display (Sorkin, et al., ref. 3) is probably unnecessary.

Parallel explorations of aurally guided visual search should continue to be evaluated under controlled

laboratory conditions, and then compared to research under actual flight operations. An important

factor, not evaluated here, is that out-the-window targets can move quickly across the field-of-view; the

work by Strybel, et al. (ref. 6) on evaluating the Minimum Audible Movement Angle (MAMA) is

particularly relevant in this regard. Future experiments at NASA Ames will evaluate standard TCAS

systems augmented with 3-D audio displays of directional information. These are more likely to be

implemented in actual operations than a purely 3-D audio TCAS system, since increased safety via a

redundant system is more desirable than replacing one system with an equivalent one.
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